Patient Attributes Influencing Pain and Pain Management in Postoperative Total Knee Arthroplasty Patients

Concurrent Session 1F
Deborah L. Gentile, PhD, RN-BC
Research Scientist
Aurora Health Care
Milwaukee, Wisconsin

Study Goal
Generate the best predictive models for pain intensity, opioid consumption, and comfort goal attainment for use in clinical management of postoperative pain for knee arthroplasty patients

Study Design
• Retrospective descriptive study
• Data extracted from a pre-existing dataset created from a clinical data repository
Research Questions

• What patient demographic, ethnocultural, and biomedical attributes, individually or in combination, influence postoperative pain intensity on postoperative day one through three?

• Is there a significant interaction between the demographic, ethnocultural, and biomedical attributes associated with pain intensity over time?

Research Questions

• What patient demographic, ethnocultural, and biomedical attributes, individually or in combination, influence postoperative opioid consumption on postoperative day one through three?

• Is there a significant interaction between the demographic, ethnocultural, and biomedical attributes associated with opioid consumption over time?

Research Questions

• What is the relationship between patient attributes and postoperative comfort goal attainment on postoperative day one through three?

• Is there a significant interaction between the demographic, ethnocultural and biomedical attributes and postoperative day associated with comfort goal attainment?
Background

• Unrelieved postoperative pain has profound consequences
• Pain following orthopedic surgery is often reported as moderate or severe
• Knee arthroplasty is one of the most common surgical procedures performed in the U.S. and is expected to increase by 300% per year through 2030

Significance

• Identified demographic, biological, and ethnocultural factors that contribute to postoperative pain intensity, opioid consumption, and comfort goal attainment for total knee arthroplasty patients
• Clinical management of acute pain has failed due to lack of individualized treatment

Significance

• Past studies of pain intensity rating and opioid consumption have dealt mainly with the 12 – 24 hour postoperative period
• No studies had examined factors that influence comfort goal attainment in adults with acute pain
Research Framework

• Multidimensional approach
 - Demographic
 - Biological
 - Ethnocultural

Literature Review

• Preoperative pain intensity
• Age
• Sex
• Race/ethnicity
• Obesity
• Smoking
• Psychological factors
• Goal setting

Variables

<table>
<thead>
<tr>
<th>Modifiable</th>
<th>Unmodifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity</td>
<td>Preoperative pain intensity</td>
</tr>
<tr>
<td>Smoking</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td>Sex</td>
</tr>
<tr>
<td></td>
<td>Race/ethnicity</td>
</tr>
</tbody>
</table>
Setting and Sample

• Midwestern 13 hospital system
• January 1, 2008 – December 31, 2008

Inclusion criteria

• Unilateral total knee arthroplasty (ICD-9 code 81.54)
• 18 to 89 years of age
• Consistent use of numeric rating scale for pain intensity

Exclusion Criteria

• Addictive disorders
• Selected pain syndromes
• Depression
Procedure

- Data acquired from Oracle database using SQL-based language called CCL
- Data was de-identified
- No text extraction
- Preprocessing of data

Generalized Estimating Equations

- Models linear, logistic, or logarithmic relationships between the patient attributes and the outcomes
- Can use with interval, dichotomous, ordinal, or categorical outcomes
- Allows for inclusion of fixed variables as well as variables that changed at each observation
- Incorporates different numbers of observations for different clusters
- Accommodates random missing data
- Handles unequal intervals between observations

Types of Models Generated

- Unadjusted
- Adjusted
- Best predictive model

Best predictive model = \(\beta_0 \) (intercept) + \(\beta_1 \) + \(\beta_2 \) + \(\beta_3 \) + \(\beta_4 \) …
Description of the Sample

- 1123 unique patient records
- 95% Caucasian
- 63% female
- Age ranged from 26 to 89 years
- 25% overweight, 66% obese
- 51% never smoked
- 31% quit smoking >12 months prior to surgery

Significant Findings

Pain Intensity: Unadjusted

- Black race ↑ (p = 0.01)
- Males ↓ (p < 0.0001)
- Current smokers ↑ (p < 0.0001)
- Former < 12 months ↑ (p = 0.01)
- BMI 32.8 ↑ (p = 0.001)
- Age 65 ↓ (p < 0.0001)
- Preoperative pain ↑ (p < 0.0001)

Adjusted Analysis Pain Intensity

- Race (p = 0.02)
- Sex (p < 0.0001)
- Smoking status (p = 0.0049)
- Age (p < 0.0001)
- Preoperative pain intensity (p < 0.0001)
- Postoperative day (p < 0.0001)
Best Predictive Model

| Parameter | Regression Coefficient Estimate | 95% Confidence Limits | Pr>|Z| |
|-----------------|---------------------------------|-----------------------|-----|
| Intercept | 3.5 | 0.3307–1.2899 | 0.0009 |
| Black | 0.8 | -0.3307–1.2899 | 0.0009 |
| Male | -0.5 | -0.6276–0.3238 | <0.0001|
| Smoking Current | 0.4 | 0.1820–0.6734 | 0.0007 |
| AGEc | -0.04 | -0.0418–0.0290 | <0.0001|
| Day 2 | 0.8 | 0.6580–0.9708 | <0.0001|
| Day 3 | 0.4 | 0.2861–0.5292 | <0.0001|

Applying the Model

- **Day 1 Pain Intensity Prediction** = 3.5161 + 0.8103 - 0.4752 + 0.4287 - 0.0364 = 4.2435
- **Day 2 Pain Intensity Prediction** = 3.5161 + 0.8103 - 0.4752 + 0.4287 - 0.0364 + 0.7644 = 5.0079
- **Day 3 Pain Intensity Prediction** = 3.5161 + 0.8103 - 0.4752 + 0.4287 - 0.0364 + 0.4076 = 4.6511

Clinical Example

- **Patient is black, 55-year-old female who never smoked**
- Calculate postoperative pain intensity for day 3

3.5161 + 0.8103 - 0.4752*0 + 0.4287*0 - 0.0364(55-65) + 0.4076 = 5.098
Significant Findings

Opioid Consumption: Unadjusted

- Smoking status
 - Current ($p = <0.0018$)
 - Former < 12 m prior to surgery ($p = <0.0075$)
- BMI ($p = <0.0284$)
- Age ($p = <0.0001$)
- Preoperative pain intensity ($p = <0.0009$)
- Postoperative day ($p = <0.0001$)

Adjusted Analysis

Opioid Consumption

| Parameter | Regression Coefficient Estimate | 95% Confidence Limits | Pr>|Z| |
|-----------------------------|----------------------------------|-----------------------|-----|
| Intercept | 16.2 | 14.7649-17.6079 | |
| AGEc | -0.4 | -0.473 - 0.2668 | <0.0001 |
| Preoperative Pain Intensity | 0.5 | 0.1132-0.9010 | 0.0116 |
| Postoperative Day 2 | 9.2 | 8.0949-10.3486 | <0.0001 |
| Postoperative Day 3 | 5.0 | 3.7714-6.4109 | <0.0001 |

Best Predictive Model

| Parameter | Regression Coefficient Estimate | 95% Confidence Limits | Pr>|Z| |
|-----------------------------|----------------------------------|-----------------------|-----|
| Intercept | 17.2 | | |
| Black | 8.4495 | 6.1776-10.7214 | 0.0453 |
| Smoking Former < 12 m | 9.9435 | -1.1857-11.0727 | 0.1139 |
| AGEc | -0.0837 | -0.1683-0.0010 | <0.0001 |
| Postoperative Day 2 | 9.6779 | 8.5775-10.7784 | <0.0001 |
| Postoperative Day 3 | 5.5044 | 4.2255-6.7833 | <0.0001 |
Applying the Model

- Day 1 Opioid Consumption Prediction = 17.2074 + 8.4495 + 4.9435 - 0.4037 = 30.1967 morphine equivalents
- Day 2 Opioid Consumption Prediction = 17.2074 + 8.4495 + 4.9435 - 0.4037 + 9.6779 = 39.8746 morphine equivalents
- Day 3 Opioid Consumption Prediction = 17.2074 + 8.4495 + 4.9435 - 0.4037 + 5.5044 = 35.7011 morphine equivalents

Clinical Example

- Patient is not black and 55 years old
- Calculate opioid consumption for postoperative day 2
 - 17.2074 + 8.4495*0 + 4.9435 - 0.4037(55-65) + 9.6779 = 35.8658 morphine equivalents

Significant Findings

Comfort Goal Attainment: Unadjusted

- Age ($p = 0.0001$)
- Smoking status
 - Current ($p = 0.0013$)
 - Unconfirmed ($p < 0.0001$)
- Preoperative pain intensity ($p = 0.0001$)
- Postoperative day
 - Day 2 ($p = 0.0001$)
 - Day 3 ($p = 0.0001$)
Adjusted Analysis

Comfort Goal Attainment

| Parameter | Regression Coefficient Estimate | 95% Confidence Limits | Pr>|Z| |
|-------------------------|---------------------------------|---------------------------|------|
| Intercept | 0.1696 | | |
| Black | -1.3473 | 0.6396–2.0557 | 0.0002|
| Smoking unconfirmed | -1.7060 | 1.0986–2.3257 | <0.0001|
| AGEc | 0.0283 | -0.0420–0.0147 | <0.0001|
| BMIC | 0.0419 | -0.0292–0.0245 | <0.0001|
| Day 2 | -0.7416 | 0.9270–0.0562 | <0.0001|
| Day 3 | -0.4319 | 0.2973–0.5666 | <0.0001|
| Preoperative pain | -0.1517 | 0.0945–0.2088 | <0.0001|

Best Predictive Model

| Parameter | Regression Coefficient Estimate | 95% Confidence Limits | Pr>|Z| |
|-------------------------|---------------------------------|---------------------------|------|
| Intercept | -0.1607 | | |
| Black | -1.0976 | 1.1024–2.2919 | <0.0001|
| Smoking unconfirmed | -2.0142 | 1.3748–2.6536 | <0.0001|
| BMIC | 0.0361 | -0.0531–0.0191 | <0.0001|
| AGEc | 0.0333 | -0.0346–0.0020 | <0.0001|
| Day 2 | -0.7620 | 0.6520–0.8721 | <0.0001|
| Day 3 | -0.4650 | 0.3346–0.5955 | <0.0001|

Applying the Model

- **Day 1 Attainment:**
 \[-0.1607 - 1.6976 - 2.0142 + 0.0361 + 0.0333 = -3.8031\]

- **Day 2 Attainment:**
 \[-0.1607 - 1.6976 - 2.0142 + 0.0361 + 0.0333 - 0.7620 = -4.5651\]

- **Day 3 Attainment:**
 \[-0.1607 - 1.6976 - 2.0142 + 0.0361 + 0.0333 - 0.4650 = -4.2681\]
Clinical Example

- Patient is not black, smokes, has a BMI of 25 and is 75 years old
- Calculate comfort goal attainment on all postoperative days
 - Day 1: $-0.1607 - 1.6976 \cdot 0 - 2.0142 \cdot 0 + 0.0361 \cdot (25-32.8) + 0.0333 \cdot (75-65) = -0.1092$
 - Day 2: $-0.1607 - 1.6976 \cdot 0 - 2.0142 \cdot 0 + 0.0361 \cdot (25-32.8) + 0.0333 \cdot (75-65) - 0.7620 = -0.8712$
 - Day 3: $-0.1607 - 1.6976 \cdot 0 - 2.0142 \cdot 0 + 0.0361 \cdot (25-32.8) + 0.0333 \cdot (75-65) - 0.4650 = -0.5742$

Implications

- Added to pain management knowledge base
- Unique contributions
 - New predictive models
 - Presents comfort goal attainment as opposed to need to set comfort goals
- Highlighted documentation issues

Limitations

- Retrospective
- Multiple surgeons
- Multiple protocols
- Some say use of numeric rating scale is a limitation
Recommendations

• Validate predictive models
• Further investigation into modifiable predictors
• Studies with matched samples
• Replication with new preemptive, multimodal analgesia protocols
• Better exploitation of clinical databases for research
• Research into pain mechanisms

Research and the Electronic Patient Record:
Lessons Learned

Patient-Centered data vs Research-Centered data

Patient 1 data

Patient 2 data

Patient 3 data

Research Data
Approvals

- Organizational priority for data extraction
- Human resources (if personnel are participants)
- Chief nurse executives
- Informed consent from participants

Data Extraction Issues

- Who can extract the data?
- When will the data be in queue?
- Cost of data extraction?
- Use of variables table to facilitate data extraction

Variables Table

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Label</th>
<th>Variable Location</th>
<th>Values</th>
<th>Value Labels or Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>Age</td>
<td>Cerner>Patient Information>Patient Demographics>Age</td>
<td>Integer</td>
<td>Date of admission - Minus birth date</td>
</tr>
<tr>
<td>PNSOURCE</td>
<td>Pain Source</td>
<td>Cerner>Task List>Patient Care>Physical Assessment>Pain Assessment>Pain Source</td>
<td>Categorical</td>
<td>Patient, Family, RN, Caregiver, Other</td>
</tr>
</tbody>
</table>
Missing Data

- Amount
- Methodologies to account for missing data
 - Mixed-effects model
 - Generalized estimating equations

Other Issues

- Data cleaning time allotted
- Duplicate time stamps
- Sanity check
 - Doses
 - Time stamp
 - Route of administration

Recommendations

- Biostatistician upfront
- Aware of data cleaning time
- Panel of EHR users to validate data
- Relationship with data extractor
Deborah L. Gentile, PhD, RN-BC
deborah.gentile@aurora.org