Ketamine: Its Role in Acute Pain in the Opioid Tolerant

Kathleen Colfer MSN, RN-BC
Acute Pain Management Service
Thomas Jefferson University Hospital
Philadelphia, PA

Objectives

1. Identify the role of NMDA receptor antagonists
2. Recognize how ketamine can be used safely and effectively in acute pain management

Off-Label Use

Use outside FDA approved indication
FDA allows off label prescribing
Professional judgment safe and effective
Off-Label

- Pharma cannot promote off label use
- FDA does not restrict other parties from discussing or distributing written materials
- Can anyone request a label change?
- Extremely costly and time consuming

Opioid Tolerance

- Develops with repeated use of opioids
- Need to increase dose to maintain equipotent analgesic effects
- Expected physiologic occurrence
- Does not imply or cause addiction

Ballantyne, J. NEJM 2003; 349:1943-1963

Cellular Mechanisms of Tolerance

- Uncoupling of G-proteins from opioid receptors
- Down regulation of opioid receptors
- Activation of N-methyl-D-aspartate (NMDA) receptor

Ballantyne, J., NEJM. 2003;349: 1943-53
Opioid Induced Hyperalgesia

- Abnormally intense or prolonged pain
- Likely up-regulation of compensatory pro-nociceptive pathways
- May aggravate pre-existing pain
- Does develop in humans

Angst M, Clark D. Anesthesiology. 2006; 104: 570-587.

Glutamate

- Major excitatory amino acid
- Interaction with receptors essential for CNS function
- Activates the NMDA receptor

N-methyl-D-aspartate Receptor

- Glutamate receptor
- Involve ion channel
- Distinct binding sites
- Ketamine binds to PCP

Figure 2: NMDA Channel
NMDA Receptor Antagonist

- Inhibit the normal function of the receptor
- Interrupts flow through ion channel
- Decreased transmission of nociceptive information

NMDA Receptor Antagonists

- ketamine
- dextromethorphan
- amantidine/memantine
- magnesium

Non-Opioid Analgesics for Postoperative Pain

Ketamine, Dextromethorphan, Memantine, Clonidine, Dexmedetomidine, Gabapentin, Pregabalin, COX-1 & 2 inhibitors, Acetaminophen

Ketamine, Dextromethorphan, Magnesium, Celecoxib, Clonidine, Dexamethasone, Gabapentin, Pregabalin, Neostigmine, Local anesthetics, COX-1 and COX-2 inhibitors

Clonidine, Steroids, Neostigmine, local anesthetics

Dextromethorphan

- Most readily available NMDA receptor antagonist
- Antitussive approved in 1958
- Reduced pain intensity\(^1,2\)
- Reduced analgesic requirements\(^1,2\)

Weinbroum A. et al. Anesthesia 2001; 56 (7): 616-21
Weinbroum A. Anesthesia & Analgesia 2002 94(6): 1547-52
Dextromethorphan

- Less psychotomimetic effects¹
- Anti-hyperalgesic effect²
- Safe to be an adjuvant³
- Study results inconsistent³
- Didn’t recommend for post op pain³

Amantadine

- Low affinity NMDA channel blocker
- Anti-viral, Parkinson’s
- Did not reduce pain scores in TAH pts.¹
- Reduced IV PCA morphine consumption²
- Lower VAS scores around wound²

Magnesium

- Magnesium blocks ion channel
- Reduced opioid consumption¹
- Intrathecal-prolonged analgesia²

Ketamine

- Dissociative anesthetic, Schedule III
- Used in human and veterinary medicine
- Analgesic mechanisms centrally and peripherally\(^1\)
- Reversal of opioid tolerance involves interaction between NMDA, nitric oxide pathway & µ-opioid receptors\(^2\)

Kohrs R, Durieux ME. Anesth Analg. 1998; 87:1186-93

Ketamine

- FDA label
 - General anesthesia; Adjunct
 - Procedural sedation
- Crosses placenta
- WHO-compatible with breastfeeding
- Thompson-can’t rule out infant risk
- Metabolized by liver- half life 2.5hr.
- Pharyngeal & laryngeal tone maintained

Thompson Micromedx® Healthcare Series: Drugdex® Drug Point

Levels of Evidence

- Level I- systematic review of randomized controlled trials-meta analysis
- Level II- one or more well designed randomized controlled trials
- Level III-non randomized or cohort or case controlled analytical studies (multi-center)
- Level IV-opinions of respected authorities based on clinical experience, descriptive studies, or expert committees
Ketamine

- Reduces morphine requirements\(^1\)
- Adverse effects mild or absent\(^1\)
- Reduced post op nausea and vomiting\(^1\)
- Reduced post op pain in opioid tolerant spinal fusion patient\(^2\)

Ketamine

- Attenuated tolerance\(^1\)
- Reduced opioid consumption\(^1\)
- Prevent central sensitization\(^2\)
- Reduces wind up\(^2\)

Woolf, CJ, Thompson, SWN. Pain. 1991; 44: 293-299.\(^2\)

Ketamine

- Low dose useful and safe in 54% studies
- Consider as additive in post op opioid tolerant
- Best used as continuous infusion
- Adding to PCA morphine not useful
- No reduction in opioid side effects
- Low dose not associated with CNS side effects

Ketamine as Multimodal Agent

- In RCT, perioperative ketamine use:
 - Reduces opioid dose by 30%
 - Reduces chronic post surgical pain syndromes

- Dose:
 - 0.1 - 0.5 mg/ kg bolus ± 0.1 - 0.5 mg/kg/hr infusion

- Side effects:
 - < 10% of patients had complaints of psycho-cognitive effects

Visser E et al: Biomedicine & Pharmacology 2006; 60: 341

Ketamine in Chronic Pain Management

- Not enough evidence to advocate routine use of ketamine in chronic pain
- Lack of enough good quality studies
- Reasonable third line option
- Severe acute on chronic episodes of neuropathic pain use continuous infusions

Ketamine Routes of Administration

- Oral
- Nasal
- Rectal
- Topical
- Epidural, Intrathecal
- Intramuscular
- Intravenous
Intranasal Ketamine

- Phase III trials
- Placebo controlled phase II trials
- Moderate – Severe post op pain
- Breakthrough pain
- 10-50mg doses
- No changes in vital signs or O2 saturation

Considerations

- No dose adjustment for renal failure
- Insufficient data to direct use in liver failure
- Contraindicated in acute porphyria
- No good data for dosing in elderly
- Lack of safety data in pregnancy and breastfeeding
- No data for pts with resp. disease, OSA or cardiac disease

Visser, E et al. Biomedicine & Pharmacology 2006; 60: 341-8

Considerations

- Ketamine is opioid sparing
- May need to administer a benzodiazepine
- Use controlled administration device
- Administer boluses over 60 seconds
Precautions

- Psychosis and schizophrenia
- Post Traumatic Stress Disorder
- Neurological issues (Cranial)- Recent head injury, increased ICP

Dosing

- General anesthesia; Adjunct: induction
 - 1 to 4.5mg/kg IV single dose
 - 1-2mg/kg IV infusion at 0.5mg/kg/min
- GA; Adjunct: maintenance
 - 0.1 to 0.5mg/min IV infusion, repeat as needed
 - 0.01 to 0.03mg/kg/min continuous IV infusion
- Procedural sedation:
 - 1-2mg/kg IV over 1-2min, then 0.25-0.5mg/kg q5-10min as needed

Sub-anesthetic Ketamine Dosing

- Only to be ordered by those familiar with ketamine
- Literature favors intra-op initiation
 - 0.25-0.5mg/kg single bolus
 - 1 to 6 mcg/kg/min infusion (may continue for a few days)\(^1\)

Potential Side Effects

- Tremors
- Dizziness
- Nausea
- Hallucinations
- Vivid dreams
- May require benzodiazepine
Monitoring
- Pre and post bolus pain score, HR, BP, sedation scale
- At least same as opioid monitoring
- Monitor for adverse effects
- Notify physician if psychomimetic effects intolerable

Documentation
- Initiation of therapy
- Boluses and rate changes
- Document any side effects

Discontinuation of ketamine
- No formal weaning necessary
- Can just stop infusion
- If patient experiencing adverse CNS effects, may continue for several hours
Conclusion

- Subanesthetic ketamine safe & effective
- Protocols and dosing vary
- Use will most likely increase
- We have had no adverse events

Case Study

- 33 y.o. Iraq war veteran; s/p fall
- Mult. Fractures all four extremities
- Vertebral fx’s- back surg. 6 days pre-call
- B/L wrist fusions day of pain consult
- External fixator- R tib/fib fx
- MSContin 30mg q6hr, hydromorphone pca

Questions