RISK FACTORS FOR AND MANAGEMENT OF OPIOID INDUCED RESPIRATORY DEPRESSION IN THE HOSPITALIZED PATIENT WITH COMORBID PAIN AND HISTORY OF ADDICTION

Carla R. Jungquist, ANP-BC, PhD, FAAN
Assistant Professor
School of Nursing

Conflict of Interest Disclosure

• Authors Conflicts of Interest:
 • Nurse Advisory Board – Medtronic, Inc.

Opioid Tolerance versus Opioid Induced Hyperalgesia

History of Opioid Addiction increases the likelihood of experiencing:
• Opioid Tolerance
• Opioid Induced Hyperalgesia
• Uncontrolled Pain
Opioid Tolerance

- Opioid tolerant patients are more likely to experience:
 - Require higher doses of opioids
 - Uncontrolled pain
 - Increased lengths of hospital stay
 - Higher readmission rates

Gulur et al (2014)
Sen et al. (2016)

RESPIRATION IS THE MOST VULNERABLE DURING SLEEP!!
During Sleep

- We loose the muscle tone in our pharyngeal airway
- Our wake respiratory drive is gone

Review of Respiratory Physiology

- Chemoreceptors regulate breathing by detecting rising CO2 levels
 - Central receptors in medulla
 - Peripheral receptors in carotid and aortic bodies
- CO2 crosses the BBB, changes the pH via H+ ions that causes increase in respiratory rate to normalize the pH.

Opioids effect respiration in several ways:

- Diminish hypercapnic and hypoxic responses
- Decrease pharyngeal dilator and reflexes to collapsing airway
- Diminish arousal/awakening response

Sasaki et al 2013
Ladd et al 2005
Li & vanDen pol, 2008
Pattinson et al, 2009
Sleep Disordered Breathing
- Obstructive Sleep Apnea
- Central Sleep Apnea
- Obesity Hypoventilation Syndrome

Obstructive Sleep Apnea

Normal breathing: During sleep, air can travel freely in and from your lungs through your airways.

Obstructive Sleep Apnea: Your airway collapses, creating air flow turbulence. Noise can be heard during your sleep.

Obstructive Sleep Apnea – noisy breathing
How to screen for OSA – STOP BANG Questionnaire

- S Snoring
- T Tiredness / sleepiness / fatigue
- O Observed apnea
- P BP (>140/90) Rx or no Rx
- B BMI >35
- A Age >50
- N Neck circumference >40 cm
- G Gender male

SCORING: 3 / 8 positive for OSA
Chung et al. Anesthesiology 2008; 108:1-10

<table>
<thead>
<tr>
<th>Sensitivity %</th>
<th>Specificity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5</td>
<td>56</td>
</tr>
<tr>
<td>2 6</td>
<td>28</td>
</tr>
<tr>
<td>2 7</td>
<td>12</td>
</tr>
<tr>
<td>2 8</td>
<td>0</td>
</tr>
</tbody>
</table>

Chung et al. Anesthesiology 2008; 108:1-10

Screen for OSA – overnight oximetry

- Overnight oximetry is not diagnostic but is ok for screening
 - Average oxygen level over the night <93%
 - Oxygen desaturation events > 29/hr.
 - More than 7% of the night at less than 90% saturated

- If patient meets any of these criteria, they are 2.2 times more likely to experience a post-op complication.

Chung, 2014

Central Sleep Apnea
Screening for Central Sleep Apnea

- Oximetry is the best
- STOP BANG really not as useful although OSA and CSA do co-occur
- Nurse observation!!!!

Obesity Hypoventilation Syndrome

- Central nervous system
 - Decreased central respiratory drive
- Airway
 - Potential difficulty breath
- Sleep apnea
- Hypoxemia
- Hypertension
- Cardiac
 - Chronic heart failure
- Others
 - Obstructive sleep apnea
 - Difficult positioning

Obesity Hypoventilation Syndrome – Risk of Post Op Complications

Compared with OSA, pts with OHS were more likely to develop:
- Postop ICU transfer OR: 10.9
- Tracheostomy OR: 3.8
- Higher ICU and hospital length of stay

Kaw R et al. Chest 2016;149:84-91
Recognizing Obesity Hypoventilation Syndrome

- BMI \(\geq 30 \)
- ABG PaCO\(_2\) >45 mm Hg (normal 35-45)
- or
- Serum HCO\(_3\) > 27 mmol/L [without other cause of metabolic alkalosis]

Recognizing Obesity Hypoventilation Syndrome – (HCO\(_3\)<27)

- During sleep, patients with OHS hypoventilate causing higher than normal carbon dioxide levels
- Carbon dioxide levels return to normal during wakefulness in most patients
- HCO\(_3\) (bicarbonate) levels found on chemical profiles represent the renal retention of HCO\(_3\) in response to higher than normal carbon dioxide levels
- The normal range is 23 to 29 mEq/L (millequivalents per liter).

Nursing Screen for OHS

- BMI \(\geq 30 \)
- Elevated HCO\(_3\) (>27)
- Room air hypoxemia (<95%) while awake
- Persistent hypoxemia (<93%) during sleep
- Remember that most all patients with OHS will have OSA and about 10% of patients with OSA will have OHS.
Screening for OHS – STOP BANG plus HCO₃

<table>
<thead>
<tr>
<th>STOP-Bang ≥ 3 + HCO₃ ≥ 28</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>47</td>
<td>79</td>
</tr>
<tr>
<td>STOP-Bang ≥ 3 + HCO₃ ≥ 29</td>
<td>30</td>
<td>88</td>
</tr>
<tr>
<td>STOP-Bang ≥ 3 + HCO₃ ≥ 30</td>
<td>16</td>
<td>96</td>
</tr>
</tbody>
</table>

Chung F et al. Chest 2013

Significance of the Problem – around 1% incidence

- Postsurgical patients experiencing opioid-related adverse drug events have:
 - 55% longer hospital stays
 - 47% higher costs associated with their care
 - 36% increased risk of 30-day readmission
 - 3.4 times higher risk of inpatient mortality compared to those with no opioid-related adverse drug events.
- Adverse opioid related sentinel events cost the healthcare system $2.5 million per claim on average.

Significance of the Problem --- Opioids in combination with benzodiazepines

Study of 21,276,691 inpatients discharges between 2008-2012 using the Premier Database revealed:

- 96,554 cardiopulmonary respiratory resuscitation and arrests (CPRA) occurred
- Patients who received opioids and sedatives had an adjusted odds ratio for CPRA of 3.47 (95% CI: 3.40 – 3.54; p <0.0001)
- Opioids alone and sedatives alone were associated with a 1.81-fold and a 1.82-fold (p<0.0001 for both)
- Only 42% of patients survived CPRA and only 22% were discharged home

Why hospitals care about this problem

- Institute of Medicine – Reducing Preventable Harm in 1999
- Affordable Care Act – Insurance providers no longer paying for care that results from preventable harm.
- Rapid Response Teams – Hospitals put in place teams that will concentrate on quickly assessing and addressing rapid patient decline.
- Electronic Medical Records – Smart technology and algorithms are being developed to help the healthcare team recognize decline before the eye can observe it.

Current Recommendations and Guidelines

- American Society of Anesthesiologists Task Force on Neuraxial Opioids
- American Society of Regional Anesthesia and Pain Medicine
- The Anesthesia Patient Safety Foundation
- American Society for Pain Management Nursing
- Anesthesia Patient Safety Foundation
- Institute for Healthcare Improvement
- Centers for Medicare and Medicaid Services
- The Joint Commission

Problems with continuous monitoring all patients on opioids using capnography

- Expense
- Alarm fatigue
- Lack of education of nurses on what the devices are monitoring
- Patients being tethered to their beds
- Although perhaps nurses are seeing a decrease in sentinel events.
Monitoring - definition

- Monitoring by nursing assessment
- Electronic Monitoring
 - Pulse Oximetry
 - Capnography
 - Minute Ventilation
 - Noninvasive Acoustic Respiration Rate

Nursing Assessments – Minimum Standards

- Triad of parameters necessary:
 1. Respiratory rate and quality
 2. Pulse Oximetry
 3. Sedation Scale
- Timing should be at peak drug effect and at least every two hours for the first 24 hours.

2012 Hospital Practice

- Comparing Best Practice to the hospital monitoring practices, we found that:
 - 8.3% of the patients on opioid IV PCA were being monitored per best practice.
 - If we changed the timeframe to every 4.5 hours
 - 26.8% of the patients were monitored using the 3 parameters of RR, PO, SS.
 - None of the patients being monitored every two hours using 3 parameters required naloxone intervention
 - 1% of the rest of the patients received a dose of naloxone.
Sedation scales

<table>
<thead>
<tr>
<th>Scale</th>
<th>2013 (n=102)</th>
<th>2009 (n=96)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasero Opioid Scale</td>
<td>53%</td>
<td>21%</td>
</tr>
<tr>
<td>Aldrete Scale</td>
<td>39%</td>
<td>30%</td>
</tr>
<tr>
<td>Ramsey Scale</td>
<td>17%</td>
<td>15%</td>
</tr>
<tr>
<td>Modified Ramsey Scale</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>Richmond Agitation-Sedation Scale</td>
<td>42%</td>
<td>12%</td>
</tr>
<tr>
<td>Riker Scale/Modified Riker Scale</td>
<td>6%</td>
<td>8%</td>
</tr>
<tr>
<td>Scale developed at your institution</td>
<td>8%</td>
<td><1%</td>
</tr>
<tr>
<td>Motor Activity Assessment Scale</td>
<td>1%</td>
<td><1%</td>
</tr>
<tr>
<td>Glasgow Coma Scale</td>
<td>37%</td>
<td><1%</td>
</tr>
<tr>
<td>University of Michigan Scale</td>
<td>4%</td>
<td><1%</td>
</tr>
</tbody>
</table>

Pulse Oximetry

- Intermittent is common practice
- Continuous is recommended for patients who are at high risk
- Positive points
 - Readily available
 - Sensitive enough if the patient is not on supplemental oxygen
 - Comfortable to wear esp for those using CPAP
- Negative points
 - Will miss rising carbon dioxide levels
 - Often not measured accurately

Intermittent Pulse Oximetry Measurement

- Nursing procedure
 - Measure the PO when the patient is still sleeping

Taenzer, Pyle, Herich, Dodge & McGrath (2014)
Continuous PO

- Continuous PO on orthopedic patients decreased transfers to ICU and length of stay.
- Alarm threshold of 85% and HR <50 or >140 BPM
- Alarm delay of 15 seconds
- Using continuous PO decreased rescue events from 3.4% to 1.2%

Taenzar et al, 2010 Perioperative Medicine

Continuous PO

- 1.7% of anaesthetic-related deaths or 0.3% of peri-operative mortality.

Burn et al. (2014)
Bulletin of the World Health Organization, 92(12):858-67
Continuous PO
Preventing Alarm Fatigue

- Setting individualized alarm threshold

Capnography

- Advantages:
 - Able to capture CO2 retention
 - More effective for patients on oxygen

- Disadvantages:
 - Nasal cannula is uncomfortable for patient
 - Interface for capnography and PAP delivery is very expensive and most often not used

PAP/Capnography Interface
Capnography
Patient Safety and Algorithms

- Enhanced Patient Safety features
- Algorithms that integrated parameters

Capnography – Resources for training and instituting

Review paper presenting how to institute capnography in your facility:

Instrument to assess Nurses Knowledge of Capnography:
Noninvasive Acoustic Respiration Rate

Minute Ventilation
Medicare and Medicaid Guidelines for home supplemental oxygen

While awake:
- O2 saturation < 89%

During Sleep:
- O2 saturation below 88% for at least 5 minutes.

Summarize

- Nurses must be educated that respiration is the most vulnerable during sleep and under sedation.
- All patients receiving opioids in the hospital setting require increased vigilance especially when you add on a sedative.
- Absolute minimum standard is nursing assessment at peak drug effect and at least every two hours for the 1st 24 hours post-op or initiating opioid PCA.
- Continuous monitoring using appropriate device is the safest, especially during sleep.
- Continuous electronic monitoring alarm thresholds should be set to control for false alarms.
- When the patient is on PAP therapy, pulse ox or MV may be more comfortable choices.
- When continuous monitoring is not available, the high-risk patient should be transferred to a higher level of care for the first 48 hours and given opioid sparing pain management strategies.

References

References

PCSS-O is a collaborative effort led by American Academy of Addiction Psychiatry (AAAP) in partnership with: Addiction Technology Transfer Center (ATTC), American Academy of Neurology (AAN), American Academy of Pain Medicine (AAPM), American Academy of Pediatrics (AAP), American College of Physicians (ACP), American Dental Association (ADA), American Medical Association (AMA), American Osteopathic Academy of Addiction Medicine (AOAAM), American Psychiatric Association (APA), American Society for Pain Management Nursing (ASPMN), International Nurses Society on Addictions (INNSA), and Southeast Consortium for Substance Abuse Training (SECSAT).

For more information visit: www.pcss-o.org

For questions email: pcss-o@aaap.org

Twitter: @PCSSProjects

Funding for this initiative was made possible (in part) by Providers’ Clinical Support System for Opioid Therapies (grant no. 5H79TI025595) from SAMHSA. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.