NSAIDs: Friend or Foe in the Battle against Pain?

Presented by
June E. Oliver, MSN, CCNS, AP-PMN, APRN/CNS

NO Conflicts of Interest to Declare

Old & Natural!
- 1763 fever Rx- bark/leaves of willow/myrtle (salicylic acid)
- 1859 - chemical structure discovered & synthesized in Germany
- 1914 - Bayer Co. started manufacturing ASA
- Current sales 11 billion (2014)
- Early 20th Century- NSAIDs discovered
- 1971 - discovered mechanism of action of NSAIDs by John R. Vane
- 1990s- COX-2 isoenzyme successfully identified & cloned
- Current script & OTC use => 30 billion doses/yr of NSAIDs in US
- Numbers increase every year
Prostaglandin (PG) Mechanism of Action

- Prostaglandins (PG) - lipids derived from acids: i.e. arachidonic (AA), linoleic, others
- PGs have Variety of functions
 - Constitutive
 - GI mucosal protection
 - Kidney function
 - Trauma response
 - Cell membrane trauma releases AA & COX enzyme converts to PGs → inflammation
 - PerIPHERAL & CENTRAL sensitization of nociceptors to mechanical & chemical stimuli
 - Pyretic response
 - PGs rise in CSF w/ pyrogen introduction
 - Although not an NSAID, acetaminophen blocks brain PG synthetase (COX3 inhibition)

Cyclo-oxygenase (COX): “The Convertors”

- Cyclo-oxygenase 1 & 2 = isoenzymes that convert AA to PGs (i.e. prostacyclin, & thromboxanes)
 - COX-1
 - Expressed regularly provides gastric & duodenal mucosal protection
 - Stimulates production mucin/bicarbonate/phospholipid that covers surface of stomach
 - Enhances GI mucosal blood flow w/ local vasodilation
 - Enhanced epithelial cell reproduction & migration towards lumen
 - Can be induced under stress

More Cyclo-oxygenase (COX) Specifics

- COX2
 - Regular expression in CNS (regulates brain injury/inflammation) & kidney
 - Also induced by trauma, endotoxins, neurotransmitters, cytokines, growth factors, hormones, etc
 - Promotes inflammation
 - Both peripheral inflammation & central actions
 - Increases electrical nerve activity (blunted w/ neural blockade & COX-2 inhibitors)
 - Humoral (biochemical) signal raises COX2 in CNS when inflammation occurs
 (blunted only by COX2 inhibition in CNS)
 - May help heal gastric ulcers
NSAID Class Characteristics

- Highly protein bound -
 - Hemodialysis does not remove them
 - Hypoalbuminemia will increase circulating level
- Effective analgesics - many studies
 - Opiate sparing (25-50% less opioid when NSAID used)
 - Multifocal use postop - less nausea, vomiting, sedation
 - Improved postop outcomes/recovery
- Different chemical subgroupings
 - If one ineffective at max dosing, try a different category
- COX-1 & COX-2
 - All NSAIDs inhibit BOTH to varying degrees
 - COX-2 selectivity in NSAIDs is a continuum - not an absolute

Relative COX Selectivity

<table>
<thead>
<tr>
<th>5-50 fold COX-2 preference</th>
<th>< 5 fold COX-2 preference</th>
<th>COX-1 Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etodolac</td>
<td>Diclofenac</td>
<td>Fenoprofen</td>
</tr>
<tr>
<td>Meloxicam</td>
<td>Sulindac</td>
<td>Ibuprofen</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>Meclofenamate</td>
<td>Tolmetin</td>
</tr>
<tr>
<td>Naproxen</td>
<td>Diflunisal</td>
<td>Algin</td>
</tr>
<tr>
<td>Piroxicam</td>
<td>Diflunisal</td>
<td>Indomethacin</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td></td>
<td>Ketoprofen</td>
</tr>
<tr>
<td>Ketorolac</td>
<td></td>
<td>Flurbiprofen</td>
</tr>
</tbody>
</table>

Chemical Grouping of NSAIDs

<table>
<thead>
<tr>
<th>Acetylated salicylates</th>
<th>Non-acetylated salicylates</th>
<th>Propionic Acids</th>
<th>Acetic Acids</th>
<th>Oxicams (Eenic acids)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>Diflunisal</td>
<td>Naproxen</td>
<td>Diclofenac</td>
<td>Meclofenamate</td>
<td></td>
</tr>
<tr>
<td>Choline-Mg Trisalicylate</td>
<td>Ibuprofen</td>
<td>Diclofenac</td>
<td>Proxocam</td>
<td>Mefenamic acid</td>
<td></td>
</tr>
<tr>
<td>Salicylate</td>
<td>Ketoprofen</td>
<td>Indomethacin</td>
<td>Mefenamic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flurbiprofen</td>
<td>Tolmetin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxicam</td>
<td>Sulindac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ketorolac</td>
</tr>
</tbody>
</table>
NSAID TOXICITIES

- NSAIDs implicated in nearly 25% of all ADRs (mild to serious)
- Most common GI irritation: dyspepsia
- More serious: 5-7% of hospital admission due to adverse effects of drug
 - 11-12% of those admissions due to NSAIDs
 - 10% of those admissions due to NSAIDs
- Often cited > 100,000 hospitalizations and > 16,000 deaths/yr in US
- Based on 1999 obs study (ARAMIS) - found 19 NSAID bleeding deaths
- Inaccurate extrapolations to general population
- 2004 study = 3,200 deaths/yr NSAID GI bleeding (Garone et al., Am J Ther)
- 2010 study (Solomon et al, Arch Intern Med)
- Nonselective NSAID mortality 48/1000 person yrs
- Opioid mortality 75/1000 person yrs

NSAID OVERDOSE & TOXICITY

- Toxic incidence likely to increase per CDC
- Aging population w/ increases in degenerative & inflammatory conditions
- Potential increase as opioid alternatives
- Acute overdose (accidental or intentional) of single large dose
 - Typically well tolerated
 - May cause n/v, drowsiness, blurred vision, dizziness - rarely serious
- Chronic use ⇒ most toxicities

Toxicity #1 - Hematologic

- COX-1 converts AA to PGs
- PG in platelets = Thromboxane A2 (TXA2) - activates platelets & vasoconstricts
- PGs in vascular endothelium - inhibits platelets & vasodilates
- ASA irreversibly inhibits COX-1 action - inhibits platelet aggregation
- Platelets vulnerable to COX-1 inhibition as cannot regenerate PGs like other cells
- Effects last for life of platelet (7-10+ days)
- Non-selective NSAIDs reversibly inhibit COX-1 = transient effect
 - Single dose Ibuprofen 300-900mg inhibits platelet aggregation x 2 hr
 - Effect completely gone in 24hr
- Piroxicam - can last several days after discontinuation
Toxicity #1 - Hematologic

- Possible bleeding risk w/ platelet inhibition
 - NSAIDs w/ lower platelet effect
 - Non-acetylated (diflunisal, choline Mg trisalicylate, salsalate)
 - COX-2 (celecoxib)
 - No COX-2 activity found in platelets

- Neutropenia and aplastic anemia - rare (<1% of NSAID users)
 - Indomethacin associated w/ higher risk

NSAIDs & Peri-Op Bleeding Risks

- Studies showing higher postop bleeding risk
 - w/ nonautosed tissues - i.e. tonsillectomy, joint replacement
 - NSAIDs w/ 1/2 life > 6hr
 - NSAIDs given before surgical control of bleeding

- Many studies historically w/ low risk peri-operative bleeding
 - 1986-87: no difference in THA/TURP w/ diclofenac vs placebo (Lindgren, Acta Anaes Scan; Bricker et al, Eur J Anesth)
 - 2000: indomethacin w/ anorectal surgery - no increase in bleeding (Coloma et al., Anesth Analg)
 - 2009 meta-analysis variety surgeries show slight increased risk w/ NSAIDs (Meylan et al., J Anesth)

- Pre-Op Stoppage of NSAID
 - Gen rule—Hold NSAID 3 days to normalize Platelet function
 - Ibuprofen effect gone in 24 hr
 - ASA: stop at least 1 week

NSAIDs & Rx Combo Bleeding Risks

- Most NSAIDs potentiate warfarin activity
 - Displace its protein binding & inhibit hepatic metabolism—increased circulating levels of warfarin
 - Elders w/ increased bleeding risk w/ combo NSAID and warfarin

- Rx Combination Risks
 - Post MI study 2 groups; clopidogrel, ASA or warfarin with and without added NSAID
 - Bleeding risk doubled w/ NSAID addition
 - Bleeding risk seen as early as 1st three days of NSAID use
 - CAUTION w/ NSAID Rx w/ other anticoagulants (avoid, limit dose/duration)
Toxicity #2 -- GI Effects

- ADRs - range of dyspepsia, gastric/duodenal ulcers and GI bleeding
- Pathophysiology of Gastric damage
 - NSAID w/ systemic effect decreasing COX (post-absorptive effect)
 - COX-1 enzymes produce mucosal protective PGs (cytoprotection)
 - Stimulates GI secretion - bicarbonate, mucin, phospholipids
 - Produces alkaline, unstirred water layer on gastric mucosa
 - Protects against acid & pepsin erosion
 - COX block - increases risk of mucosal injury and decreased repair response
 - Gastric repair (restoration) associated w/ COX-2 activity
- Enteric coating
 - Clinically no difference in preventing ulcers/bleeding
 - Ulcers & bleeding due to systemic effect, small topical effect on mucosa

Gastro-duodenal Toxicity

- ASA - irreversible COX inhibition
 - Doses 10mg/day inhibit gastric PG and can damage stomach
 - Damage increases as dose increases
 - After d/c of low dose ASA - 5-8 days for stomach to recover full COX-1 activity
- Other NSAIDS - even transient COX inhibition damages gastric mucosa
 - < 1 week Rx unlikely to cause major GI damage
 - Damage most common in first three months of Rx
- Duodenal damage r/t gastric acid (not due to COX inhibition)
 - H2 blockers may help (but not w/ gastric damage)
- H. pylori infection - independent AND synergistic risk of ulcers w/ NSAIDs

Risk & NSAID Gastro/duodenal Toxicity

Am College of Gastroenterology (ACG) 2009

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Risk Stratification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hx of Uncomplicated Ulcer</td>
<td>HIGH - Hx of complicated ulcer OR ≥ 3 risk factors</td>
</tr>
<tr>
<td>Age >65 years</td>
<td>MOD+ - ≥ 2 risk factors</td>
</tr>
<tr>
<td>High dose NSAID (≥ 3x risk)</td>
<td>LOW+ - zero risk factors</td>
</tr>
<tr>
<td>Meds: Concurrent use of ASA (any dose) glucocorticoids, anticoagulants, (includes anti-platelet, warfarin, heparin, direct thrombin & factor Xa inhibitors)</td>
<td></td>
</tr>
</tbody>
</table>

OTHER RISK FACTORS (beyond ACG table)

- Unrepaired H. pylori infection
- Chronic use (2004 meta-analysis = avg 84 days before s/s toxicity)
- Concurrent use SSRIs (platelet serotonin effect inhibits activation)
- Ketonazole: 5.5 x more likely than other NSAIDs to cause GI toxicity (limit 5 day use)
Risk Reduction with Medications

PPI
- Once daily dosing, well tolerated; probably all w/ equal effect
- COX-2 plus PPI outcomes better than other NSAIDs plus PPI
- PRECISION Study (2016)- w/ ASA use – less upper GI events w/ PPI & COX-2 vs PPI & Non-selective NSAIDs
- CONCERN Study (2017)- on ASA– Hx healed ulcers after GI bleeding; PPI w/celecoxib or naproxen
 - Recurrent GI bleed 5.6 % celecoxib and 12% naproxen
 - Risk lower but still significant for Celecoxib & PPI = 1 in 20 patients w/ recurrent GI bleeding
- Misoprostol (prostaglandin analogue) 200 mcg qid
 - Less well tolerated than PPI (dyspepsia, diarrhea, abd pain)
 - Less than qid ineffective risk reduction

GI (Gastro-duodenal) Risk Reduction Actions

Use COX-2; mod reduction GI bleeding compared to non-selective NSAID
- Risk still increased c/w placebo
- Low risk benefit lessened w/ concurrent low dose ASA or warfarin
- Test & treat H. Pylori—BEFORE starting NSAIDs if hx of ulcers OR long-term NSAID anticipated
- PPIs- Best Practice Advice expert opinion (Freedberg et al.,Gastroenterology, 2017)
 - If High risk for GI ulcer/bleeding — PPI as long as on NSAID
 - Use lowest dose PPI- review periodically
 - Long-term PPI use
 - Do NOT routinely raise intake Ca, Vit B12, Mg
 - Do NOT routinely take probiotics to prevent infection
 - Do NOT routinely monitor bone density, creatinine, Mg, B12
- Side effects- Low quality data; i.e. Vit B12 deficiency, possible Osteoporosis

PPI Potential Side Effects (low quality data)

- Bone Fracture +10-30%
- GI perforations +5%
- Malabsorption in 5%
- Myocardial infarction +1-4%
- SAEs +10-30%
- Infusions 1-30%
- Mild diarrhea 10-30%

PPI: Consult the use of PPI and side effects data.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817415/figure/f4-jpr-11-361/?report=objectonly
Monitoring Gastro-duodenal toxicity

- GI toxicity often asymptomatic until shortly before clinical event
 - Little correlation between dyspepsia & presence of ulcers/erosions
 - Drugs w/o COX inhibition can cause dyspepsia w/o known ulcer risk
 - i.e. Acetaminophen
 - Suspect ulceration if:
 - Unexplained blood loss/ anemia
 - Iron deficiency
 - Significant dyspepsia
 - Any i/s GI bleeding
 - Endoscopy indicated w/ suspicion
 - CT abd if perforation suspected

Small Bowel Injury (SBI)-Beyond duodenum

- Under-reported; affected area beyond reach of routine endoscopy
- Video Capsule Endoscopy (VCE) increased findings in distal sm bowel
- Erosions, ulcers, scars, strictures
- High Incidence
 - 53-76% in healthy short-term NSAID users; 50-71% in long-term use (>3 months)
 - While on acid suppression
 - Can occur as early as 2 weeks of use
- SBI manifestations
 - Iron deficiency anemia / occult bleeding
 - Protein-losing enteropathy/malnutrition (permeability)
 - Recurrent abdominal pain assoc w/ strictures
 - Sm bowel diaphragm disease
 - Circular mucosal membranes divide & narrow bowel lumen– potential strictures & obstruction

Small Bowel Injury

- Lit review - Increased risk w/Oxicams & diclofenac
- NSAIDs w/ ASA more damaging than ASA alone
- Not associated w/ duration of NSAIDs OR lowered w/PPI use
- Lesions can persist > 18 months after stopping NSAID
- Prophylaxis
 - PPIs & H2- blockers shown effective w/ gastro-duodenal dz
 - PPI may worsen NSAID SBI - GI altered bacteria (Gwee et al. J Pain Res. 2018)
 - Celecoxib w/o PPI = lowered risk in some studies
 - Rebamipide (not available in US) & misoprostol co-prescription
 - Studies show prevention & enhanced healing of SBI
 - Rx for inflammatory Bowel Dz (IBD) reduces SBI
 - Novel agent- nitric oxide donors (mucosal blood flow, bicarb secretion, mucous production)
Risk & NSAIDs; Upper & distal GI

<table>
<thead>
<tr>
<th>Risk Factors Gastro/duodenal</th>
<th>Risk Factors G2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 65 years</td>
<td>Age > 30 years</td>
</tr>
<tr>
<td>> 7 days of therapy</td>
<td></td>
</tr>
<tr>
<td>High dose NSAID</td>
<td></td>
</tr>
<tr>
<td>Prior Peptic Ulcer Di/Prior NSAID toxicity</td>
<td></td>
</tr>
<tr>
<td>H/Pylori infection</td>
<td>Comorbidity/arthritis</td>
</tr>
<tr>
<td>Genetic polymorphisms</td>
<td>Genetic polymorphisms</td>
</tr>
<tr>
<td>Concurrent use anti-platelets, glucocorticoids, anticoagulants, SSRIs</td>
<td>Concurrent anti-platelet Rx</td>
</tr>
<tr>
<td>Use of dietietenac and celecoxib (i.e. meloxicam)</td>
<td></td>
</tr>
</tbody>
</table>

Toxicity #3 --Cardiovascular

- CV thrombotic events, MI, stroke
- Increased risk w/ COX-2 inhibitors - (more studied: initial view)
 - Unbalanced synthesis PG1 (vessel endothelium) & thromboxane (platelets)
 - Normal platelet action is a balance between PG1 and TXA2
 - PG1= platelet inhibitor & vasodilator
 - TXA2= platelet activator & vasoconstrictor
 - COX-2 inhibitors block PG1 only
 - Contributes to atherosclerosis & exaggerated thrombotic response to plaque rupture
 - MI/CVA risk = 1.7-5x risk w/ rofecoxib in VIGOR & APPROVE studies in 9-18 mo
 - VIGOR- Included high risk pts w/ RA but no ASA used
 - Uncertain risk w/ ASA use in high risk pts
 - Voluntarily withdrawn from market 2004

Cardiovascular Risk-Celecoxib

- Gastricoma Prevention w/ Celecoxib) APC study (2004)= 200-400mg bid x 33 mo
 - 2.3-3.4 Increase in CV events after 12 month
- PreSAP study (2002)= 380mg qod vs placebo x 32 months
 - Smaller increase in CV events
- (Alzheimer's Disease Anti-Infm Prev Trial) ADAPT study (2004)= 200mg od vs placebo
 - No increase in pg celecoxib ; but increase risk w/ naproxen
- Valdecoxib studies -- increase risk w/ supramaximal doses x 14 days (40mg bid)- but not w/ therapeutic dosing
- 2005 FDA
 - Affirmed risk of celecoxib similar to non-selective NSAIDs
 - Deemed risk high w/ valdecoxib and requested withdrawal from market
 - Black box warning for NSAID category- script & OTC

(Wee et al, J Pain Research 2018)
Figure 2. Combined analysis showing 3 separate dosing regimens in the PreSAP and APC studies.

Cardiovascular Risk Updates

- All NSAIDs can contribute to HTN
 - Celecoxib w/ possible lower effect
 - Rated CV thrombotic risk of various NSAIDs in 31 million patients
 - Rofecoxib - 45% increase
 - Diclofenac - 40% increase (increases w/ higher doses)
 - Indomethacin - 30% increase
 - Meloxicam - 20% increase
 - Ibuprofen - no increase at lower doses; increase w/ higher doses
 - Naproxen - slight increase at any dose
 - Celecoxib - similar to ibuprofen

2016 PRECISION Study: CV Safety of celecoxib, naproxen or ibuprofen

- 24,081 patients w/ RA/OA w/ increased CV risk; ASA 80mg /day allowed
- Avg /day = Celecoxib 200 mg, naproxen 875mg, ibuprofen 2045 mg
- Rx for 20 months & follow up 34 months
- Esomeprazole 20-40mg qd for all patients
- Analysis of CV related death, nonfatal MI/CVA
- Celecoxib 2.3% vs Naproxen 2.5% vs Ibuprofen 2.7%

CONCLUSION:
[CV risk w/ CELECOXIB AT MODERATE DOSES IS NOT GREATER THAN RISK WITH NON-SELECTIVE NSAIDS.]
OTHER PRECISION OUTCOMES

- Pain control similar w/ all 3 drugs w/ small benefit w/ naproxen
- Does NOT support naproxen as safer CV side effect profile
- Serious GI events lower in celecoxib group
- Serious renal events lower in celecoxib group vs ibuprofen but not naproxen
- Hospitalization for HTN lower in celecoxib group than ibuprofen but not naproxen
- Secondary Analysis Study (Solomon et al, Rheum 2018)
 - COX2 has superior safety profile to NSAIDs—but ASA eliminates that advantage likely (if GI effects ?) and equalizes overall safety compared to non-selective NSAIDs

NSAID Competition w/ ASA

- 400mg Ibuprofen & ASA together may lower antiplatelet effect of ASA
- ASA irreversible effect on COX-1 in platelets
- ASA has short half-life of 0.25-0.3hr- so short window for irreversible action to occur
- Nonselective NSAIDs compete w/ ASA for binding sites on platelets
- Studies show ibuprofen, naproxen interfere w/ ASA platelet effect
- Cox-2 NSAIDs – no competition w/ ASA (meloxicam, diclofenac, celecoxib)
- 2006 & 2016 FDA recommendations
 - Ingest Ibuprofen 8 hr before or 30min after ASA dose
 - Ingest Naprosyn 30 min after ASA
- COX-2 selective has NO interference (ASA acts on COX-1)
- Other non-selective NSAIDs w/ same potential- although studies lacking
- Unclear timing w/ enteric ASA as absorption/action delayed
- 2018 FDA added warning w/ naproxen and concomitant ASA

Aspirin Action Film
- Eats (receptor binding), Shoots (inhibits platelets), Leaves (short half-life)
Toxicity #4- Renal

Incidence= 1-5% of NSAID users (> 2.5 million patients/year)
- NSAID- induced renal disorders include:
 - Hemodynamically mediated acute injury (AKI)
 - Electrolyte and acid-base disorders
 - Acute interstitial nephritis (AIN)
 - Papillary necrosis (PN)
- 2 main mechanisms of injury
 - Functional & inflammatory
 - COXs locally produced at multiple sites in kidney
- NSAID- induced renal disorders include:
 - Hemodynamically mediated acute injury (AKI)
 - Electrolyte and acid-base disorders
 - Acute interstitial nephritis (AIN)
 - Papillary necrosis (PN)
- 2 main mechanisms of injury
 - Functional & inflammatory
 - COXs locally produced at multiple sites in kidney

Functional Mechanism- hemodynamics

- COX (more COX1) = renal vasodilator -- controls hemodynamics & GFR
- Block COX1 = decrease renal synthesis of PGs affecting autoregulation & renal blood flow
- Decreases GFR (glomerular filtration rate)
- Renal ischemia
- GFR NOT PG dependent in normal renal function, & normal hemodynamics
- Renal poor perfusion -- PG mechanisms necessary to maintain renal blood flow and normal GFR
- i.e dehydration, AKI, CHF, cirrhosis

NSAID & Renal Electrolyte Effects

- COX (More COX2) - promotes excretion salt & H2O
- Na+ & Fluid retention / COX2 blockade = edema/HTN
- Chronic NSAID Rx = 0.5-1Kg weight gain in healthy pts
- Fluid retention usually resolves w/ongoing NSAID in 1-8 weeks
- NSAIDS can alter/block diuretic binding or diuretic effect

Hyperkalemia

- NSAIDs impair renin & aldosterone secretion
- Mild effect in healthy pts w/o additional risk factors
- Increased effect in AKI
- Increased effect w/ ACE inhibitors/ARB drugs, K-sparing diuretics

Hyponatremia (Uncommon)

- NSAIDs enhance ADH -- increased water reabsorption -- dilutional low Na
- Clinical effect if underlying ADH conditions (SIADH, volume depletion)
NSAID & Renal Toxicity

Inflammatory Mechanism
- Interstitial nephritis & glomerulopathy = Hypersensitivity reaction
- Non-dose dependent, allergic type response
- Proteinuria and leukocytes in urine (may lead to nephrotic syndrome)

Summary of Risk Factors for renal toxicities
- Chronic NSAID use
- Multiple NSAIDs used
- Dehydration
- Age > 60 yr
- Comorbid renal dz, CHF, Lupus, liver dz, hypercalcemia affects renal perfusion
- Concurrent Medications -- diuretics, ACE inhibitors, ARBs (inhibit \(vasoconstriction \) w/ low volume states = renal ischemia risk)
- Nephrotoxic drugs/contrast- heightened response w/ NSAID

NSAID Renal Toxicity - Clinical Monitoring

- Asymptomatic till advanced injury
- Monitor for Increased plasma creatinine
- Can occur in first 3-7 days of therapy (time to reach max PG blockage)
- Can occur at any time in therapy
- Monitor UA
 - AKI/UA w/ low proteinuria (< 500 mg/day), no hematuria, maybe hyaline casts
 - ATN: UA w/ epithelial cell casts, granular casts, WBCs, WBC cell casts
- Meta-analysis of 114 trials(116,00 pts) suggests heterogeneity among NSAIDs w/ renal effect
 - Celecoxib lower risk than other NSAIDs (RR 0.83)

Renal Toxicity INTERVENTIONS

- Stop NSAID
- Fluid balance- replace, treat underlying disease
- Correct electrolytes if needed
- Expect AKI recovery w/ norm creatinine in 3-7 days
- If delayed recovery, further w/ ultrasound or biopsy
- NSAID choice
 - ALL carry risk
 - Indomethacin MAY be more toxic
 - Lower risk w/ sulindac & ASA & possibly celecoxib
 - ASA partial/temp effect on renal COX
- Restarting NSAID after AKI resolved
 - Cautiously if NO underlying dz, low risk factors & reversible/corrected cause
 (i.e. dehydration)
Toxicity #5 --Liver

- Drug induced liver injury (DILI)
 - Less common than other toxicities but less studied
- U.S. Registry of drug induced liver injury 2016 report (1221 cases)
 - 30 cases assoc w/ 8 different NSAIDs (2.45% of all cases)
 - Mean onset 67 days post NSAID start
 - Hepatocellular injury most common pattern (70%) vs autoantibodies (30%)
 - Diclofenac most frequently implicated
 - Caution/avoid w/ advanced liver disease
 - Increases variceal bleeding risk
 - Contributes to diuretic resistant ascites

Toxicity #6 --BONE HEALING

- Literature in early 2000s stated risk of non-union of spinal fusion/fx
 - Animal studies often used
 - No level 1 evidence from human studies
- Study of 9995 pts w/ humeral fx (Arthritis Rheum 2005)
 - NSAID use in first 90 days significantly assoc w/ nonunion
 - BUT only days 61-90 showed relationship between NSAID & nonunion
 - Same relationship demonstrated w/ opioid use in days 61-90
 - Suggest painful non-union fx may be cause of NSAID & opioid use

NSAIDs & BONE HEALING

- Systematic review of 138 studies (Sivaganesan, Eur Spine J, 2017)
 - Studies after 2005 show use < 2weeks postop w/o effect on non-union
 - Particularly low risk x 48 hr use postop
- Systematic review of 38 yr literature & 12,895 pts (J Clin Anesth 2018)
 - Overall study quality low w/ conflicting data; RCTs needed
 - Human trials w/ NO strong evidence of NSAIDs increasing non-union after fx or fusion
 - Animal & human tissue studies
 - Short perioperative use not deleterious
A Word on Topical NSAIDs

- **Comparable efficacy** to oral NSAIDs w/OA/musculoskeletal pain in RCTs and meta-analysis (Rannou et al, Sem Arth Rheum 2016)
 - 50% pain relief in OA w/diclofenac over 8-12 weeks
 - Number needed to treat (NNT) 6 for solution & 11 for gel formulation
 - Ketoprofen recent studies failed to show benefit over placebo
 - Topical salicylates separated out in some studies - Slightly less effective

- **Variable topical absorption rates through skin**
 - Etodolac (21%), diclofenac (6%), ibuprofen (5%), ketoprofen (1%), salicylic acid (1-2%)
 - Evidence for accumulation in target tissues - synovium, fascia, muscle, ligament
 - Diclofenac 10-20x higher in synovial tissue than plasma w/topical use

- **TOPICAL NSAIDs**
 - Use may lower po NSAID use
 - Study 3500 pts w/40% reduction in po NSAID w/top etofenamate
 - Lower toxicity profile
 - Blood level w/topica/3.4-2.2% of blood level w/po diclofenac
 - No GI harm or renal failure noted
 - Improved tolerability
 - Mild skin rash most common side effect
 - American College of Rheumatology
 - Strongly recommended over po NSAID for patients > 75 yrs

NSAID vs Opioids: which is better?

<table>
<thead>
<tr>
<th></th>
<th>NSAIDs</th>
<th>OPIOIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Effects</td>
<td>Y (increase w/use)</td>
<td>Y (decrease w/use)</td>
</tr>
<tr>
<td>Major Organ toxicity</td>
<td>Y (GI, kidney, liver, CV)</td>
<td>N</td>
</tr>
<tr>
<td>Obscurable early S/S of toxicity</td>
<td>Off/na</td>
<td>Y (sedation)</td>
</tr>
<tr>
<td>Fluid/Electrolyte imbalance effect</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Use-threatening toxicities</td>
<td>Y (bleeding, MI, CV, renal failure)</td>
<td>Y (respiratory arrest/sedation)</td>
</tr>
<tr>
<td>Substance Use Disorder Risk</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
NSAID AS FRENEMY!
KNOW HOW TO USE IT & WHEN NOT TO!

- Effective Analgesic
- Anti-Inflammatory
- Opioid sparing
- Non-serious & serious side effects
- Helpful in acute & chronic nociceptive pain
- Unlikely to replace opioids for mod/severe pain
- Adjunctive use helpful
- Limited effect on neuropathic pain
- Best use - time limited, dose limited, appropriate patient selection, monitored side effects

References
- Available on request

PCSS Mentoring Program
- PCSS Mentor Program is designed to offer general information to clinicians about evidence-based clinical practices in prescribing medications for opioid addiction.
- PCSS Mentors are a national network of providers with expertise in addictions, pain, evidence-based treatment including medication-assisted treatment
- 3-tiered approach allows every mentor/mentee relationship to be unique and catered to the specific needs of the mentee.
- No cost.

For more information visit: pcssnow.org/mentoring
PCSS Discussion Forum

Have a clinical question?

Ask a Colleague

Educate. Train. Mentor

PCSS is a collaborative effort led by the American Academy of Addiction Psychiatry (AAAP) in partnership with:

<table>
<thead>
<tr>
<th>Association/Professional Organization</th>
<th>Association/Professional Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Academy of Family Physicians</td>
<td>American Psychiatric Association</td>
</tr>
<tr>
<td>American Academy of Neurology</td>
<td>American Society of Addiction Medicine</td>
</tr>
<tr>
<td>Addiction Technology Transfer</td>
<td>American Society of Pain Medicine</td>
</tr>
<tr>
<td>American Academy of Pain Medicine</td>
<td>Association for Medical Education and Research in Substance Abuse</td>
</tr>
<tr>
<td>American Academy of Pediatrics</td>
<td>National Association of Community Health Centers</td>
</tr>
<tr>
<td>American College of Emergency Physicians</td>
<td>American Psychiatric Nurses Association</td>
</tr>
<tr>
<td>American Dental Association</td>
<td>National Association of Drug Abuse Professionals</td>
</tr>
</tbody>
</table>

PCSS is a collaborative effort led by the American Academy of Addiction Psychiatry (AAAP) in partnership with:

- American Academy of Family Physicians
- American Academy of Neurology
- Addiction Technology Transfer
- American Academy of Pain Medicine
- American Academy of Pediatrics
- American College of Emergency Physicians
- American Dental Association
- American Psychiatric Association
- American Society of Addiction Medicine
- American Society of Pain Medicine
- Association for Medical Education and Research in Substance Abuse
- National Association of Community Health Centers
- National Association of Drug Abuse Professionals

Educate. Train. Mentor

www.pcssNOW.org
pcss@aaap.org
@PCSSProjects

Funding for this initiative was made possible (in part) by grant nos. 5U79TI026556-02 and 3U79TI026556-02S1 from SAMHSA. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.