Associations between Gut Microbiome and Migraines in 7-18-year-old Children: the American Gut Cohort Analysis

Jinbing Bai, PhD, MSN, RN
Assistant Professor
Deborah Watkins Bruner, PhD, RN, FAAN
Robert W. Woodruff Professor of Nursing
Nell Hodgson Woodruff School of Nursing Emory University

Conflict of Interest Disclosure

Author’s conflicts of interest: None

Educational Objectives

• Understand the concept of gut microbiome
• Be familiar with the microbiome-gut-brain axis
• Assess associations between the gut microbiome and Migraines
Significance

- 10% children suffer from migraine
- Migraine can result in more school absences and lower academic performance
- The gut microbiome may impact migraines through the following pathways:
 - Intestinal epithelial permeability
 - Inflammation
 - Microbiome-gut-brain axis

Definition of Gut Microbiome

- A collection of microorganisms and their genomes in human GI tract
- Human gut hosts tens of trillions of microbes, 500 species on average
- Gut microbiome changes across the lifespan

Mechanism of Gut Microbiome in Pain

- Neural: Vagus nerve & spinal
- Metabolic: SCFAs (butyrate, propionate, and acetate)
- Immune: cytokines
- Tryptophan & neurotransmitters

Microbiome-Gut-Brain Axis

a. Neural: Vagus nerve & spinal
b. Metabolic: SCFAs (butyrate, propionate, and acetate)
c. Immune: cytokines
d. Tryptophan & neurotransmitters
Research Purpose

- **Profile** the gut microbiome in children aged 7-18 years from the American Gut Project (AGP)
- **Examine** the associations between the gut microbiome and migraines among a cohort of children aged 7-18 years from AGP

Methods

- AGP is an ongoing national project
- All de-identified AGP data have been deposited into the European Bioinformatics Institute sequence repository
- Following the Illumina MiSeq 515f-806r amplification protocol, 16S rRNA V4 gene was sequenced
- All data except confidential information is openly and freely for use

- Eligible participants: 7-18-year-old children and had the gut microbiome data available
- Raw 16S rRNA sequencing and metadata were obtained from the AGP Public Repository
- In this study, 16S rRNA single-end sequencing data (~150bp reads) per sample and metadata were obtained from the EBI repository before data analysis
Methods

- Quality control of 16S rRNA data used DADA2
- Alpha-diversity (observed-OTUs, Shannon, Faith's PD) and beta-diversity metrics (weighted-, unweighted-UniFrac, Bray-Curtis distances) were analyzed
- Taxonomic and abundance analyses were conducted using QIIME 2

Results

- 381 children (341 without migraines and 40 with migraines) were analyzed.
- These children had mean age of 11.5 years and mean BMI of 18.0.
- Migraine children were more White (p=0.04), more boys (p=0.01), younger (p=0.002) and more underweight (p<0.001).

- Compared with those without migraines, children with migraines showed lower estimates in observed-OTUs, Shannon and Faith's PD (p<0.01)
Results

- The Bray-Curtis (LEFT) and weighted-UniFrac (RIGHT) distances displayed the gut microbial dissimilarities between children with and without migraines (p=0.001)

Results

- Children with migraines had higher abundances in genus
 - Actinobacteria (e.g., Bacteroides, Parabacteroides, Eggerthella, Odoribacter),
 - Firmicutes (e.g., Lachnospira, Dorea, Veillonella)
 - Proteobacteria (e.g., Sutterella) than children without migraines.

Conclusion

- Associations between gut microbiome diversity and abundances and migraines in children suggested potential biological mechanisms of migraines
- Future work needs to examine how the metabolites of gut microbes impact migraines in children
- The microbiome-gut-brain axis should be further studies in children with migraines
- Personalized interventions can be designed towards migraine control
Funding Support

- Sigma Theta Tau, Alpha Epsilon Chapter, 5/1/-2017-5/1/2018
- SNRS/ANF, 09/01/2017-8/31/2019
- Oncology Nursing Society, 1/15/2018-1/14/2020